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Abstract 

Electron diffraction/microscopy and X-ray diffraction 
techniques have been used to study the thorium/ 
vacancy ordering and microdomain structures of 
quenched and slow-cooled samples of the A-cation- 
deficient perovskite-related phase ThNb4Olz. In both 
types of samples, there is primary ordering of thorium 
atoms into the cuboctahedral sites in alternate (001)p 
layers. The quenched and slow-cooled samples have 
different secondary orderings of thorium atoms and 
vacancies in the occupied (001)p layers. In the 
quenched samples, the thorium atoms and vacancies 
are ordered in alternate rows parallel to [100]p and 
[010]p. Short segments (20-50A) of the two orien- 
tation variants are statistically distributed in a type of 
tweed pattern, separated by boundaries that are aligned 
predominantly parallel to (ll0)p and (ll0)p. In the 
slow-cooled samples, the ordering of columns of 
thorium atoms and vacancies parallel to [ll0]p or 
[1.10]p occurs in microdomains, with domain bound- 
aries parallel to (100)p and (010)p and with average 
separations of 6ap, 6bp =- 24 A. The domains cor- 
responding to the two orientations of thorium columns 
form a checkerboard pattern of two interpenetrating 
sets of corner-shared squares. In either set, the ordering 
of columns is propagated along diagonal rows of 
corner-shared domains, but there is no correlation 
between adjacent rows. The NbO 6 octahedra are tilted 
about the [ll0]p and [ll0]p axes, parallel to the 
thorium-column orientations, and the domain bound- 
aries act as mirror-twin planes for the octahedral tilt 
systems. This periodic change in the tilt-axis orientation 
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gives rise to characteristic clusters of split superlattice 
spots in the diffraction patterns for ThNb40~2. Optical 
transform methods were used to check the validity of 
microdomain models for both the quenched and the 
slow-cooled samples. 

Introduction 

In part I (Alario-Franco, Grey, Joubert, Vincent & 
Labeau, 1982), we presented electron and X-ray 
diffraction results for samples of the A-cation-deficient 
perovskite-related phase Th0.25NbO 3 (i.e. ThNb40~2), 
which were slowly cooled from the melt. The diffraction 
patterns showed both strong, sharp reflections and 
groups of very weak, diffuse satellite reflections. The 
sharp reflections, which indexed with a tetragonal 
perovskite supercell (a t = ap, c t = 2Cp), resulted from 
long-range ordering of thorium atoms into alternate 
(001)p layers of cuboctahedral A-cation sites, as 
originally reported by Trunov & Kovba (1966). The 
diffuse satellite reflections were interpreted as resulting 
from short-range ordering of thorium atoms and 
vacancies within the (001)p layers. Splitting of certain 
groups of satellite reflections was observed, charac- 
teristic of a periodic two-dimensional array of domains, 
with domain boundaries oriented parallel to (100)p and 
(010)p. However, in order to simplify the interpretation 
of the diffraction patterns, we considered in part I the 
diffraction effects arising from one type of domain 
only. We thus established a model for the local ordering 
of thorium atoms, together with associated niobium 
displacements and tilting of the octahedral framework, 
in a single-domain approximation. In this paper, we 
consider the nature of the microdomains and the 
interdomain modifications of thorium/vacancy order- 
ing and octahedral tilts. 
© 1982 International Union of Crystallography 
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Table 1. Summary of diffraction data for ThNb4Ol2 

Subcell parameters (A) 
ap, bp 
cp 
Cp/ap 

Superlattice 

Diffraction results 

1. [OlOIp zone 
(h/2 0 l/2)p superlattice 

reflections 

Quenched samples 

(a)* (b) (c) 

3.9010 (9) 3.8976 3.8959 
3.914 (1) 3.9201 (3) 3.9223 (4) 
1.003 1.005 1-006 

2ap x 2bp x 2Cp 

Sharp for h even 
Diffuse for h odd 

Slow-cooled sample (d) 

3.898 (2) 
3.926 (2) 
1.007 

3 V/-2ap × V/-2bp × 4Cp 

Sharp for h even 
Absent for h odd 

2. [001l zone (a) 
[h/2 k/2 0lp superlattice Diffuse for h or k odd 

reflections Very weak, diffuse for 
h and k both odd 

(b) and (c) 
Sharp for h or k odd 
Split into four satellites in form 

of cross for h and k odd 

Absent for h or k odd 
Split into four satellites for 

h and k both odd 

3. Other diffuse diffraction Absent 
effects 

Diffuse rods elongated along 
g{ 110 }p, see Alario-Franco 
et al. (1982). 

* (a) Quenched in an ice-cooled platinum dish from above the melting point. (b) Quenched in ice water from just below the melting point. 
(c) Cooled rapidly in air from just below the melting point. (d) Slowly cooled in furnace from 1523 K to room temperature. 

We also report electron diffraction/microscopy and 
X-ray diffraction studies on samples of ThNb40~2 
quenched rapidly from temperatures near the melting 
point. A similar microdomain texture is found in the 
quenched phase, but the thorium/vacancy ordering is 
quite different from that found in the slow-cooled 
phase. The results for the quenched phase give some 
insight into the way in which thorium ordering occurs 
in the slow-cooled phase, and a mechanism is proposed 
for the evolution of ordering with decreasing 
temperature. 

these were used in the subsequent studies in preference 
to the larger lumps forming the bulk of the product, 
which would have cooled more slowly. 

Experimental 

The experimental procedures and preparation of the 
slow-cooled phase are given in part I. For the 
preparation of the quenched phase, a mixture of Nb205 
and ThO 2 was melted and held at about 30 K above its 
melting point (1661 K) for 15 h. The material was then 
cooled at 7 K h -1 to  a few degrees below the melting 
point, and finally quenched in ice-water. In subsequent 
electron diffraction studies, this phase exhibited some 
diffuse reflections resulting from the onset of the 
ordering found in the slow-cooled phase. Hence an 
alternative quenching approach was tried in which a 
hole was drilled in a pre-reacted pellet of ThNb40~2 and 
the pellet hung on a fine platinum wire. The pellet was 
then placed in a vertical furnace, the temperature of 
which rapidly increased to above the melting point of 
the compound. As soon as the pellet melted, it fell from 
the wire into an ice-cooled platinum dish below. A 
small part of the product consisted of tiny spheres, and 

(a) 

(b) 
Fig. 1. Quenched ThNb40~2: (a) [010]p zone diffraction pattern; 

(b) the corresponding bright-field image. 
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Observations 

Electron diffraction~microscopy studies 
We have previously presented electron diffraction 

and microscopy results for slow-cooled ThNb40~2 
(Alario-Franco et al., 1982). The results obtained for 
quenched samples are illustrated in Figs. 1-3 and the 
diffraction observations for both types of sample are 
summarized in Table 1. 

A [010]p diffraction pattern (DP), shown in Fig. 
l(a), displays extra reflections that require a doubling 
of both ap and cp, in contrast to the slow-cooled phase 
in which a doubling of Cp only was observed (Alario- 
Franco et al., 1982). The superlattice reflections along 
g(100)p are considerably weaker and more diffuse than 
those along g(001)p. A bright-field image corre- 
sponding to the DP in Fig. 1 (a) is shown in Fig. 1 (b). It 
shows a patchwork-quilt array comprising segments in 
which 8 A fringes parallel to [0011p are joined to other 

segments in which the 8 A fringes are parallel to [ 100]p. 
In some areas the fringes are replaced by an 8 A square 
array of white blobs. There appears to be an antiphase 
arrangement of spots across some of the boundaries 
separating the segments, but the boundaries are 
indistinct and in many cases the [100]p and [0011p 
fringes form undulating waves with an amplitude of 
about 4 A and a period of 50-100 A. 

A series of [001]p zone DPs corresponding to 
different quenched samples is shown in Figs. 2(a)-(c). 
They display extra reflections that require a doubling of 
both the ap and the bp perovskite subcell axes. In Fig. 
2(a), corresponding to the most rapidly quenched 
sample, the superlattice reflections of the type (~,k,O)p, 
h odd, and (h,~,0)p, k odd, are broad and diffuse, and a 
series of even more diffuse spots can be seen at 
positions (~,~,0)p, h,k odd. For samples that were 
quenched less rapidly, the former type of superlattice 
reflections are sharp and well defined, and the spots 

(a) (c) 

(b) (d) 
Fig. 2. [00lip zone diffraction patterns for (a) rapidly quenched ThNb40~2 (sample a in Table 1); (b) less rapidly quenched ThNb~O~2 

(sample b in Table 1); (c) as for (b) but tilted slightly about g(100)p; (d) slow-cooled ThNb40~2. 
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corresponding to the latter type are replaced by clusters 
of four satellite reflections in the form of crosses, whose 
arms are parallel to g(100)p and g(010)p (Fig. 2b). It 
can be seen that the satellites are actually rod-like, 
being elongated in the direction corresponding to the 
splitting. The splitting of the satellites corresponds to 
periodicities close to 6 × ap and 6 × bp. Slight tilting of 
[001]p zone DPs about g(100)p or g(010)p revealed 
weak diffuse streaks, parallel to g(110)p and g(il0)p,  
that intersected the superlattice reflections of the type 
(+,k,0)~, h odd, and (h,+,0)p, k odd (Fig. 2c). 

A bright-field image taken from a [0011p zone DP is 
shown in Fig. 3(a). It comprises a complex inter- 
penetrating system of short (<50,/~) 8 A  fringes 
parallel to [100]p and [010lp. A 4/~ spacing of white 
spots is (poorly) resolved along the fringes in some 
areas. The fringes are rarely straight; they display the 
same undulations observed in the [010]p zone-axis 
image (Fig. lb). Short [100]p and [010]p segments of 
fringes join to form maze-like patterns. The quasi- 
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(a) 

(b) 
Fig. 3. Bright-field images obtained from 10011p zone diffraction 

patterns for quenched ThNb+Oj2. 

periodic patchwork-like domain structure in Fig. l (b) is 
not evident in images from [00lip zone DPs. The image 
shown in Fig. 3(b) is also taken from a [001]p zone DP. 
In this case, the 4 ,/k spacing between the white spots 
along the 8/~ fringes is clearly resolved. Only one 
orientation of fringes can be seen in this image. 

In Fig. 2(d) a [00lip zone DP for slow-cooled 
ThNb4Ol2 is reproduced for comparison with the 
quenched samples. The superlattic reflections of the 
type (h,~,0)p, k odd, and (~,k,0)p, h odd, are absent for 
the slow-cooled specimens. However, the crosses of 

k four satellites at (~,~,0)p, h,k odd, remain, and they are 
generally sharper and more clearly resolved than they 
are for the quenched samples. The separation of the 
satellites corresponds to periodicities close to 6 × ap 
and 6 x bp respectively, as for the quenched samples. 

X-ray diffraction studies 

Quenched ThNb40~2. Lattice parameters for the 
ThNb+O~2 samples subjected to different quenching 
conditions are given in Table 1, along with similar 
parameters for the slow-cooled phase. A correlation is 
apparent between the rate of quenching and the cp/ap 
ratio; the more rapid the quenching, the closer cu/a p is 
to 1.000. Even for the sample subjected to the most 
rapid quenching directly from the melt, the Guinier 
powder patterns displayed quite sharp reflections 
corresponding to a tetragonal subcell; i.e. ap × bp × 
2cp. These were underlain by very broad peaks 
corresponding to doubling of the ap (and bp) axes. 
Measurements of the half-widths of the broad peaks 
gave a correlation length of about 35 ,/k perpendicular 
to the (100)p and (010)p planes. 

Precession photographs displayed superlattice spots 
at (~,0,0)p, (0,~,0)p and (0,0,~)p, h,k,l odd; i.e. at 
positions requiring a doubling of all three perovskite 
unit-cell parameters. No intensity was observed at 
(~,~,0)p, h,k odd, as occurs for ThTa4Ol2, for which a 
doubling of a.  and bp has been reported by Kovba & 
Trunov (1962~. 

Slow-cooled ThNb40~2. The main results for the 
slow-cooled phase are reported in part I. Fig. 4 is an 
(h,k,½)p precession photograph that exhibits crosses of 
split satellite reflections centred at k~ (~,~,~)p, h,k odd. 
Note that the complete crosses are confined to 
positions {~,~,½}p. For reflections with h :/: k, only one 
pair of satellites, corresponding to one arm of the 
crosses, can be seen. The satellite splitting is ~ × 
d*(100)p and so the corresponding average width of the 
domains giving rise to the crosses is 6 x ap, as found 
also from measurements of electron DPs. 

In neither the slow-cooled nor the quenched samples 
were crosses of split superlattice reflections observed in 
(h,k,O)p precession photographs, even after exposure 
times of up to 700 h. This is in contrast to the electron 
diffraction observations (Fig. 2). 
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Structural models 

Domain structures in quenched ThNb40~2 

Sharp (0,0,/~)p, I odd, reflections were observed in 
both the X-ray and the electron DPs for all of the 
quenched samples, including those subjected to the 
most rapid quenching conditions. Furthermore, a 
tetragonal distortion was always evident, with cp/ap > 1 
(Table 1). These observations are consistent with an 
ordering of thorium atoms into alternate (001)p layers 
of cuboctahedral sites of the perovskite structure, as 
discussed by Trunov & Kovba (1966); i.e. along cp 
layers of cuboctahedra that are statistically half-filled 
with thorium atoms alternate with layers of empty 
cuboctahedra. The question to be answered is how the 
thorium atoms are distributed in the half-filled (001)p 
layers. The electron images shown in Fig. 3 suggest a 
model that is illustrated in Fig. 5, where [ 1001p rows of 
filled cuboctahedral sites alternate with empty rows in 
alternate (001)p layers. This model gives rise to (h,~,0)p, 
k odd, superlattice reflections but not to n k (~,~,O)p, h,k 
odd, reflections• To explain the observation of both 
(,~,k,0)p and (h,,~,0)p reflections, it is necessary to 
consider a domain model with ordering of [100]p and 
[010]p rows of thorium atoms respectively with rows of 
vacancies in different domains. 

Structure-factor calculations were carried out for 
domain models containing the two orientations of 
thorium-atom chains and having various domain 
boundaries. Two extreme examples are illustrated in 
Fig. 6. In Fig. 6(a) the domain boundaries are very 
regular and are parallel to (100)p and (010)~, while in 
Fig. 6(b) the boundaries are irregular and are generally 
parallel to (110)~ and (i 10)p. 

Irrespective of the orientation of the domain bound- 
aries, the main changes to the perovskite DPs are the 
appearance of superlattice reflections at (~,k,0)p, h odd, 
and (h,~,0)p, k odd, as shown in Figs. 6(c) and (d). In 
addition to these relatively strong sharp superlattice 

Fig. 4. Slow-cooled ThNb~O]2: (h,k,½)o precession photograph. 

spots, bands of weak diffuse scattering appear, connec- 
ting the superlattice spots. The diffuse bands are 
directly related to the orientation of the domain 
boundaries. For the model shown in Fig. 6(b), the 
diffuse bands are parallel to g(110)p and g(ll0)p,  as 
experimentally observed, Fig. 2(c), suggesting that the 
[100lp and [0101p chains are related across diagonal 
boundaries similar to those in Fig. 6(b). Evidence 
favouring this type of model is suggested by the circled 
area in Fig. 3(a), but interpreting this image in terms of 
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Fig. 6. Two possible microdomain models for quenched ThNb40]2, 

with domain boundaries (a) parallel to (100)p and (010)p and (b) 
parallel to (l l0)p and (ll0)p. The structures are viewed in 
projection along 10011p, and the thorium atoms are represented 
by the filled circles. The corresponding calculated (h,k,l)p 
diffraction patterns are given in (c) and (d). Subcell reflections 
are marked with crosses. 
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the projected thorium charge density is tenuous in such 
a disordered system, where the layers of thorium atoms 
perpendicular to the projection axis are not fully 
correlated. 

Microdomain structures in slow-cooled ThNb401: 

Interpretation of  satellite splitting in crosses. The 
development of split crosses of satellites at n k (~,~,O)p is 
illustrated in Fig. 2. For the most rapidly quenched 
samples, no splitting was observed (Fig. 2a). In 
contrast, splitting in the slow-cooled samples was well 
defined in electron DPs (Fig. 2d). The satellite 
intensities were extremely weak since they were not 
observed in X-ray DPs. even after exposures of many 
hundreds of hours. However. the crosses were easily 
observed in precession photographs for upper-level 
[001]p zone-axis DPs at positions ~ k t~ ~.~.~#. h,k,! odd: 
e.g. as shown in Fig. 4. The intensities (but not the 
splitting) of these reflections can be reproduced by a 
model comprising a system of octahedral tilts about the 
1110]p or [[ 10]p axes together with small accompany- 
ing displacements of thorium atoms perpendicular to 
the tilt axes (Alario-Franco et al.. 1982). To explain the 
splitting of the satellites it is necessary to consider how 
this single-domain model is modified by the incor- 
poration of quasiperiodic microdomain boundaries 
parallel to (100)p and (010)p with average separations 
of 6 ×ap. 6 Xbp~_24A. 

Using optical transform methods (Lipson, 1972), we 
found that the observed distribution and splitting of 
crosses could be qualitatively reproduced (in projection 
along [001]p)by a regular microdomain model in which 
the system of octahedral tilts was reflected across 
periodic, intersecting (100)p and (010)p domain bound- 
aries. The optical mask corresponding to this model is 
illustrated in Fig. 7(a). and the resulting DP is shown in 
Fig. 7(b) (compare the experimental pattern in Fig. 4 ) .  
It can be seen that the domain boundaries act as 
mirror-twin planes for the octahedral tilt systems, and 
the tilt axes are alternatively parallel to [ll0]p and 
[i 10]p in adjacent domains. Perfect coherence of the 
oxygen framework is maintained across the boundaries. 
We have not attempted to account for the accompany- 
ing small displacements (-.-0.06 A) of thorium atoms in 
the optical simulation experiments; it is apparent that 
the change in the orientation of the octahedral tilts 
alone accounts qualitatively for the main features of the 
observed DPs. 

Inclusion of  thorium~vacancy ordering. A complete 
microdomain model for slow-cooled ThNb4012 must 
also explain the observed diffraction effects associated 
with thorium/vacancy ordering. As reported in part I, 
the ordering of thorium atoms and vacancies in 
columns parallel to [ll0]p gives rise to superlattice 
reflections in the form of diffuse rods elongated parallel 
to g(il0)p. A second set of diffuse rods, elongated 

parallel to g(110)p, is always~observed in the DPs and 
can be considered to arise from I ll01p columns of 
thorium atoms and vacancies from a second type of 
domain. The lengths of the diffuse rods correspond to 
correlation lengths of 20-30 A between { 110 }p planes 
of ordered thorium atoms and vacancies; i.e. the 
correlation lengths have the same magnitude as the 
separation between the microdomain boundaries which 
suggests a lack of correlation between the thorium 
ordering in successive domains. On the other hand, the 
microdomain model must allow for long-range inter- 
domain ordering within the {ll0}p planes, consistent 
with the relatively small cross sections of the diffuse 
rods (corresponding to correlation lengths of 200- 
300 A). 

Optical transform methods were again used to test 
different microdomain models for ThNb40,2. The most 
satisfactory comparison with the observed DPs (in 
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Fig. 7. (a) Part of the optical diffraction screen used to simulate 

octahedral tilts in a microdomain model for slow-cooled 
ThNb40~2. For clarity, the octahedra are outlined in the central 
section, and dashed lines have been added to indicate the domain 
boundaries. (b) The corresponding diffraction pattern, obtained 
by optical transform methods. 
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projection down [001]p) was obtained by using the 
mask shown in Fig. 8(a) for the thorium/vacancy 
ordering. An idealized network of intersecting (100)p 
and (010)p domain boundaries with constant 
separations of 6 × ap and 6 × bp was used. The 
intradomain ordering was idealized as three filled 
[110]p (or []10]p) rows of thorium atoms alternating 
with three empty rows. [The ordering actually observed 
is not so well developed and can be approximated 
by a sinusoidal modulation model (Alario-Franco et 
al., 1982).1 In the microdomain model, the periodicity 
perpendicular to the columns was 6 x d(110)p, and it 
was maintained over the whole mask for each diagonal 
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Fig. 8. (a) Part of the optical diffraction screen corresponding to a 

microdomain model for thorium/vacancy ordering in slow- 
cooled ThNb40~2. Only the thorium-atom positions were used. 
Dashed lines have been added to indicate the domain boundaries. 
The boundaries surrounding a diagonal row of corner-shared 
domains are emphasized by heavy lines. Note that the periodicity 
of alternate columns of thorium atoms and vacancies is 
maintained along these rows and all equivalent parallel rows. (b) 
The corresponding optical diffraction pattern. Third-order 
satellites are indicated by s. 

row of corner-connected domains, such as the row 
outlined in Fig. 8(a). However, no ordering was 
assumed between adjacent diagonal rows containing 
the same column orientation, i.e. the ordering of 
thorium atoms along the columns was confined to 
single domains. 

The DP generated from this model is shown in Fig. 
8(b). It reproduces in projection the four observed 
diffuse rods about each subcell reflection, with sides 
parallel to g(110)p and g(i 10)p (cf. Fig. 3 in part I). The 
distance from the subcell spots to the centres of the 
diffuse rods is ~ × d*(ll0)p, as experimentally 
observed. 

In the microdomain model shown in Fig. 8(a), no 
allowance has been made for the effect of small cation 
displacements. We previously obtained a quantitative 
estimate of both niobium and thorium displacements by 
least-squares refinement (Alario-Franco et al., 1982). 
They are of the order of 0.25 and 0-1/i, respectively. 
Our microdomain model also does not allow for the 
possibility of segregation or clustering of thorium atoms 
at the domain boundaries. As is evident from Fig. 7(a), 
the orientation relationships between tilted octahedra 
across the mirror-twin boundaries are different from 
those within the domains, and it is possible that this 
influences the ordering of thorium atoms at the 
boundaries [compare the clustering of copper atoms at 
antiphase boundaries in CuAu II (Jehanno, 1965)]. It is 
apparent that when the domain size is very small, as in 
ThNb40~2, the number of atoms occurring at domain 
boundaries can be a significant fraction of the total 
number and can influence the properties of the material. 
However, with the optical transform experiments, we 
were unable to confirm if any segregation or clustering 
occurred at the boundaries. As discussed in part I, the 
diffraction effects caused by thorium/vacancy ordering 
(plus atomic displacements) are extremely weak and 
diffuse, requiring exposure times for X-rays of hun- 
dreds of hours. The total number of measurable 
superlattice reflections, being limited to first-order 
satellites only, is small, thus severely restricting the 
possibility of detecting such fine details as modification 
of ordering at domain boundaries. However, the 
microdomain models shown in Figs. 7(a) and 8(a) 
qualitatively reproduce all of the features of the DPs for 
slow-cooled ThNb40~2, and they confirm that: 

1. The domain boundaries, parallel to (100)p and 
(010)p and with an average separation of 6 x ap, 6 x 
bp, are mirror-twin planes for systems of octahedral 
tilts about the [ll0]p and [il0]p axes in successive 
domains. 

2. The domains containing [110]p ordered columns 
of thorium atoms and vacancies, and those containing 
[ll0]p columns, form two interpenetrating sets of 
corner-shared domains (cf. the black and white squares 
of a checkerboard). In either set, the ordering of 
columns is propagated along diagonal rows perpen- 
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dicular to the columns, but there is no correlation 
between adjacent rows. 

Development of order in quenched ThNb4012 

It was observed that as the rate of quenching of 
ThNb40~2 was increased, the perovskite subcell cJap 
ratio approached closer to 1 (Table 1). This suggests 
that, at temperatures very close to the melting point, the 
average structure is cubic and probably consists of 
short (100)p chains of thorium atoms alternating with 
rows of vacancies, as shown in Fig. 5, and statistically 
oriented parallel to the three cubic axes. 

The first stage in the development of order in 
ThNb4012 is ordering of thorium atoms into alternate 
(001)p planes. Even for the most rapidly quenched 
samples, the (h,k,~)p, l odd, superlattice reflections 
resulting from this ordering are sharp and well defined; 
e.g. as shown in Fig. 1 (a). The corresponding image in 
Fig. l(b) shows that the (001)p fringes are actually 
quite irregular, displaying wave-like oscillations similar 
to those observed in iron-doped rutiles quenched from 
near their melting points (Bursill, Netherway & Grey, 
1978). 

In contrast to the reasonably well established order 
along [00lip, the ordering of thorium atoms and 
vacancies within the (half) occupied (001)p planes is 
very poorly developed and consists of short segments 
of alternately filled and empty rows of thorium atoms 
along [1001p and [010]p. These rows are not ordered 
into regular domains, but rather form an irregular 
tweed pattern similar to those formed by cubic and 
tetragonal precipitates in heterogeneous cubic alloys 
(Chen, Morris & Khachaturyan, 1979). The resulting 
electron diffraction/microscopy data are consistent 
with the formation of predominantly diagonal bound- 
aries [i.e. parallel to (ll0)p and (ll0)p] between the 
l l001p and 10101p segments of thorium/vacancy order- 
ing (see Figs. 2c, 6b and 6d). 

Indirect support for the type of model shown in Fig. 
6(b) is given by the fact that this model also provides a 
simple mechanism for the structural changes that occur 
in slow-cooled ThNb40~2. The thorium atom arrange- 
ments that form along the diagonal boundaries in the 
model are similar to those that occur in the slow-cooled 
samples, and we propose that the boundaries act as 
nuclei for the formation of [110]p and [ll0]p columns 
of thorium atoms as the material slowly cools. The 
relatively small number of atom movements involved in 
the transformation is illustrated in Fig. 9. The atom 
movements are all perpendicular to the rows of thorium 
atoms, and they consist of 4 .A hops to adjacent 
cuboctahedral sites. These movements may be caused 
by the condensation of a soft transverse mode of 
vibration of the rows of thorium atoms. The circled 
area in Fig. 3(a) appears to represent the type of 

transformation depicted in Fig. 9. The two orientations 
of diagonal domain boundaries in the quenched 
samples, parallel to (110)p and (110)p, act as nucleating 
centres for the corresponding two orientations of 
thorium/vacancy columns in the slow-cooled samples 
(Fig. 8a). The heterogeneous nucleation and growth of 
these columns must lead to a microdomain texture in 
which the boundaries bisect the two column orien- 
tations; i.e. they are parallel to (100)p and (010)p. 
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Fig. 9. Possible mechanism for the evolution of ordering with slow 
cooling in ThNb40~2. The thorium displacements necessary for 
the transformation from the high-temperature form (a) to the 
low-temperature form (c) are indicated by arrows. Thorium 
atoms are represented by the filled circles, (00 l)p section. Note in 
(b) that the average thorium occupancy of the I 1101p rows (i.e. O, 
~Th, ]Th, Th, ]Th, ~Th, 0) corresponds to the sinusoidal 
modulation model reported in part I. The further thorium 
displacements necessary to produce an ordered alternation of 
three filled and three empty I l l0 l  rows is shown in (c). The 
arrows marked in (a) indicate domain boundaries. The ordering 
shown in (b) is a possible intermediate stage. 
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Many details relating to the formation of the 
microdomains and the structural modifications at the 
domain boundaries remain unknown and further 
studies on this interesting material are warranted, using 
high-resolution electron microscopy as well as inelastic 
neutron diffraction. 
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Abstract 

The properties of Gaussian growth-disorder models are 
explored and their use for producing realizations of 
disordered lattices for optical transform analogue 
experiments is described. Use of Gaussian variables 
provides greater flexibility than previously described 
binary ones and in particular enables realizations to be 
produced in dimensions greater than two without 
restriction on the values of nearest-neighbour cor- 
relation coefficients. A method of converting Gaussian 
realizations to binary ones is also described. 

I. Introduction 

Optical transform methods (Lipson, 1973) have 
become well established as aids in deducing the 
structure of materials from their X-ray diffraction 
patterns. Although for non-disordered single-crystal 
structure determination the method cannot compete 
with computer calculations, for non-crystalline or 
disordered materials the method still has considerable 
appeal, not least being the power of the visual 
presentation of results to stimulate thought and aid in 
the development of intuition. The production of an 
optical transform from a screen representing a compli- 
cated statistical distribution of atoms or molecules is 
just as readily performed as from one representing the 
simplest regular arrangement. With the advent of fast 
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digital to film writing devices the production of the 
basic diffraction screen (Harburn, Miller & Welberry, 
1974) is now readily performed under computer 
control. 

However, while it is now possible to produce 
diffraction screens containing ~10 ~' scattering points 
very rapidly and easily compared with the tedious 
manual techniques previously employed, the very size 
of the assembly presents quite a new problem. This 
concerns the way in which the actual distribution of 
scattering points is generated. The complicated 
statistical distribution of atoms and molecules men- 
tioned above arises in nature in ways which must be 
mimicked in the generating computer program. While 
in principle the underlying physics may be understood 
sufficiently to make this possible, in practice the 
process is often far too lengthy for an assembly of 
points anywhere near as large as that desirable to 
obtain a good noise-free diffraction pattern, even for a 
simple physical model such as the spin-½ Ising model. 

For this reason we have developed a number of 
stochastic models called 'growth-disorder models' 
(Welberry & Galbraith, 1973) which may be used to 
generate rapidly and easily, using a simple algorithm, 
spatial distributions of random variables having specific 
statistical properties. While these provide distributions 
less general than might be supposed to occur in real 
substances, they nevertheless still have considerable 
flexibility so that it is likely that any real physical effect 
may be approximated quite satisfactorily. Several 
examples in which these models have been used to 

© 1982 International Union of Crystallography 
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Abstract 

A general class of helical disorder exists which can be 
described by cumulative random angular motions of 
subunits. This disorder affects layer-line intensities and 
widths by a factor proportional to n 2, the square of the 
order of the layer line. The result explains several 
features of actin and polytetrafluoroethylene (Teflon) 
transforms, and may be relevant to other helical 
systems. 

We have described the angular motions of subunits in 
the F-actin helix (Egelman, Francis & DeRosier, 1982) 
based upon image analysis of electron micrographs. In 
this paper we will present an analytic treatment of the 
effect of this form of disorder on the transform of such 
a structure. Because this treatment appears to explain 
features of other disordered systems (such as Teflon 
above the 292 K transition), we believe that it may be 
applicable to many helical structures. 

Whereas the subunit positions in an ideal helix can 
be described by 

0567-7394/82/060796-04501.00 

!~-= r 0 

zj = j A z  

q/j = ~j _ ~ + dq/ = j AqJ, 

we will deal with a particular form of disordered helix 
where subunit positions are described by 

ri = ro 

z~ = j  Az 

q/i= ~i- l  + Aq/ + fi i=J Aq j +  )-J, ilk. (1) 
/, i 

Fig. 1 shows a model of a helix described by these 
equations, and Table 1 contains the first ten values of 6i 
for one of the filaments in Fig. 1. 

The recursive relation in (1) is nothing more than a 
correlated random walk in ~,, and can be param- 
eterized in terms of the first moment and the square 
root of the second moment of the distribution of 6Ss: 

(6.~): ( a i ) ' : = a  ........ . 

© 1982 International Union of Crystallography 
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We will define (d j )  = O. 
Thus, for a given ~vj, we will expect to find ~i + l = 

~j + Aqt + ~r.,, .... ~ + 2 = ~'j + 2 A ~  + 2 " 2 6r ....... ; etc. 
When dr.,,,.,, is small with respect to Aq,, angular  

Fig. 1. A computer-generated model shows how cumulative angular 
disorder affects the appearance of a helical fiber. Spheres have 
been arranged according to the helical geometry of actin (approxi- 
mately 13 subunits in six turns of a left-handed 59 ,/% pitch helix). 
In (a), the placement of subunits is regular. In (b)-(d), the 
angular rotation between subunits has an r.m.s, fluctuation of 
10 °, and these fluctuations have a Gaussian distribution. In all 
filaments shown, the axial rise per subunit is fixed, and all four 
filaments begin at the bottom with their first subunit in the same 
angular position. Because the deviations of the subunit angular 
positions are cumulative, the points where the right-handed two- 
start helices cross over (marked by the arrows) have been almost 
randomized in (b)-(d). 

correlat ion will be maintained over many subunits. As 
6r.,,.~. grows with respect to Aq/, the correlation length 
will obviously fall. 

The t ransform of both a perfect helix and our 
disordered helix can be understood in terms of a 
product  of the t ransform of an individual subunit 
multiplied by the t ransform of  the helical lattice. In 
deriving the Fourier t ransform of the disordered helix, 
we can ignore the radial component ,  since this disorder 
will not affect it. The t ransform of the remaining axial 
and azimuthal  components  of the helix generates a 
sampling function C ( n , Z )  which gives rise to layer 
lines. Any given layer line will have an order n 
associated with it which is related to the azimuthal  
symmetry  of  the corresponding helix (n = 1 for a 
one-start,  n = 2 for a two-start,  etc.). We will calculate 
this sampling function and follow the s tandard con- 
vention where Z = l/c; l = layer-line number,  
c = helical repeat. For  the ideal helix, we have 

.% 

C ( n , Z )  = ~ exp[ i ( -nqJ i  + 2nZz,)] (2) 
i I 

using 

~i = j A ~  

Zi = J  Az  = j p A ~ / 2 n ,  

where p is the pitch of  a one-start  helix, 

,% 

C ( n , Z )  = X expl i ( - n j A ~  + jZpAVJ)l  
i I 

.% 

= ~ expl i ( j A ~ ( p Z  - n)l. 
j = l  

The corresponding C ( n , Z )  for the disordered helix 
described by (1) is 

, [( ; )] C ( n , Z )  = ~ exp i - n j A ~ -  n } (~k + 2 n Z z j  
.i I I, I 

The exact solution of  this equation depends upon the 
detailed knowledge of  the ~k's, including both their 
individual values as well as their sequence. However,  
using statistical methods,  we can solve for the expec- 
tation value, ( C ( n , Z ) )  in terms of  another  expectation 
value, (6~)J/2. From (2) we can see that  for a given n 
there will exist a family of  Z0., 's (layer lines) such that 

Av/( pZo. . - n) = 2nm; m = O, +_ l, + 2 . . . . .  

It can easily be shown that  the disorder term in (3) will 
not shift the expectation value of these Zo,, 's .  This 
lollows from the expectation value of the sum over the 
~k's being equal to zero. Therefore, the expectation 
value for the layer-line peak will always be at the same 
position it would be in the absence of disorder. 
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Thus,  at the expected layer-line peaks, (3) reduces to 

C(n,Zo. , , )= e x p - i n  ~ c~ . (4) 
/ I h I 

when rSr.,,..,. = O, IC(n,Z)l  = N. 
For the more general situation (b~.,,.~. ~- 0) it is 

helpful to rewrite the double summation in (4) as a 
single sum: 

\ 

C(n,Zo.,~)= ~ exp(--ifli), (5) 
/ I 

where 

( ( ~ - g + , ) : ) '  '= n4,,,.~ 

The magnitude of  this summation will build as a 
correlated r andom walk. That  is, for nat.. ..... signifi- 
cantly less than 2re (for actin, we have experimentally 
determined 6~.m.s. to be of the order of 10°), successive 
terms in the summat ion  will involve the addition of  
vectors (whose angle is given by fl) which are quite well 
correlated in angle. Thus,  these terms will build as N, 
the number  of  steps. However,  over many  steps, the 
vectors will appear to be doing a random walk in the 
complex plane. In this limit, the summat ion should 
grow a s  N ]'2 

In Fig. 2, the summat ion of  (5) is performed for the 
first ten subunits of Fig. 1, filament b. One can see that  
for n = 3 the correlat ion between steps in the complex 
plane begins to die off much more rapidly than for 
n = 1. While both curves (n = 1 and n = 3) have a 
random component  in their growth, it can be seen that 
for N = 10 there is still a strong correlat ion in both 
between the first step and the tenth. This description of 
a correlated random walk is isomorphic with the 
expected end-to-end distance of  a long fi lamentous 
polymer,  which is bending in solution. Over a very long 
length the filament behaves as a random coil, while over 
short stretches the filament is best approximated as a 
relatively rigid rod. The mean squared end-to-end 
distance of  such a flexible polymer  can be written as 
(Landau & Lifschitz, 1958) 

Table 1. Model  values f o r  cumulat ive  disorder 

J at (°) /~ O~ = 1) (°) fit (n = 3) (°) 
1 12.5 12.5 37.4 
2 15.8 28.3 84.8 
3 -15.4 12-9 38.6 
4 -4.9 7-9 23.8 
5 -7.8 0. I 0.4 
6 6.3 6.4 19.2 
7 -9.9 -3.5 -10.6 
8 7.6 4.0 12.1 
9 6.6 10.6 31.8 

10 2.6 13.2 39.5 

These are the values of ~i for the first ten subunits of Fig. 1, 
filament b. The corresponding fli's are as defined in equation (5). 

where b is a correlat ion length and L is the contour  
length along the polymer.  The expectation value of  
fC(n,Zo,,)[ 2 will behave in the same manner  as ( R 2 ) ,  
and we can therefore write 

2 . . . .  1 + e :~'" (6) ( IC(n 'Z° '") l  ) --2 a 

where N is the number  of  subunits (analogous to L). 
We have redefined the bending correlat ion length b in 
terms of  a diffraction correlation length a, 2b = a, for 
later simplicity. We can define this new correlat ion 
length by once again referring to polymer bending, in 
which we find the relationship (Landau & Lifshitz, 
1958) 

e - r ' h=  (cos O(L)),  

where 0 is the angle between tangents to a filament at 
two points separated by the contour  length L. We can 
now write a corresponding equation for our walk in the 
complex plane: 

(cos(nak))  = e >", 

where the mean angular  deviation after one subunit 
(N = 1) is n3r.,,,.~.. For  n3r.,,.~ ~ 1, we can expand this 
and we have 

a =  4/n 2 6~.,, .... . 

The most  unusual  feature of  this equation is that  the 
correlat ion length varies for different layer lines. For  
example, we determined that  for actin 6,.m.s. - 10°. On 
the sixth layer line of  actin where n = - 1 ,  a ~ = 131 
subunits while on the first layer line, where n = 2, 
a 2 = 33 subunits. 

It is impor tant  to note that  the intensities of  these 
layer lines will be differently affected. We can simplify 

L 
Im 

Re 

~ n =  3 
Fig. 2. The growth of the sampling function, C(n,Zo.,,), proceeds as 

a correlated random walk in the complex plane. We have plotted 
here the summation in equation (5) for the first ten subunits of 
Fig. 1, filament b. The values of ~j and fli for these subunits are 
given in Table 1. 
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(6) for the case where N >> a, ,  that is, the filaments we 
are diffracting from are longer than the correlation 
length: 

(I C(n,Zo.n)l 2) = aN = 4 N / n  2 ~.,, .... . 

Thus, when one is dealing with lengths significantly 
greater than the correlation length an important feature 
emerges from this equation. The peak layer-line 
intensities (except for meridional reflections which will 
be unaffected by this disorder) will be weighted by a 
factor of l /n  2. Further, since the total intensity of 
scattering will still be equal to N for both the ordered 
and disordered case, the width of a layer line in the 
meridional direction will be independent of N when 
N ~> a. Since the peak intensity is equal to 4 N / n  2 ~2.m.~. 
the width will be equal to n 2 t~2/4 (= 1/a) in this regime. 
Thus the helical object diffracts as a mosaic of helical 
stretches of length a n where the length is different for 
different layer lines. 

All of these statistical predictions have been con- 
firmed using Monte Carlo simulations of helical 
filaments whose geometry is described by (1). These 
simulations have involved up to one million subunits, 
and their results in terms of layer-line intensities and 
widths have been in excellent agreement with our 
analytical treatment. 

The practical consequences of these features are 
quite significant for X-ray diffraction. As n increases, 
not only will the peak intensity be decreased, but the 
increased width of the layer line will help to make it 
indistinguishable from the background incoherent 
scatter. 

We have dealt elsewhere (Egelman et al., 1982) with 
how the predictions of this formalism successfully 
describe several features of the actin transform. We 
would like to point out here that this formalism is 
equally relevant for describing the unsampled fiber 
pattern of polytetrafluoroethylene after the 292 and 
303 K transitions. It has been understood for a 
considerable time from X-ray diffraction (Clark & 
Muus, 1962b) and NMR (Hyndman & Origlio, 1960) 
that individual chains in polytetrafluoroethylene 
crystals undergo torsional motions after the 293 K 
transition and that these motions appear to be of even 
greater magnitude after the 303 K transition. A 
previous treatment (Clark & Muus, 1962a)of the effect 
of this disorder dealt only with the crystal Bragg 
reflections (that is, the sampled intensities on layer 
lines). We believe that our treatment extends this to 
explain the appearance of the unsampled continuous 
layer-line intensities arising from the disorder. Because 
the meridional reflections remain sharp after both of 
these transitions, it is reasonable to believe that our 
equation (1) provides a good description of the motions 
in the Teflon chains. The n = 2 (l = I) continuous peak 

intensity seems to disappear after the 292 K 
transition, while the n = 1 reflections on the sixth and 
seventh layer lines themselves weaken or disappear 
after the 303 K transition. This is exactly the prediction 
of our formalism, where the correlation length for all 
n 4= 0 falls as the temperature increases. For any given 
temperature, the correlation length for a layer line will 
be proportional to 1/n 2. 

That our equation (1) describes the disorder in 
Teflon fairly well is further supported by model- 
potential-energy calculations (DeSantis, Giglio, Liquori 
& Ripamonti, 1963; McMahon & McCullough, 1965; 
Bates, 1967; Bates & Stockmayer, 1968) for free 
filaments which yield a relatively shallow potential- 
energy well for rotations about the C - C  bond. For 
T = 300 K, a shift of k T  from the most stable bond 
angle (about 165 ° ) appears to be equal to about +8 ° 
(McMahon & McCullough, 1965, Fig. 2). These shifts 
can be mapped into the helical coordinates ~' and z. 
The absolute shift in d~u (the angular rotation between 
subunits) is about the same as the shift in the bond 
angle, but the fractional change in A~u for this amount 
of rotation is 15 times greater than the corresponding 
fractional change in the axial rise d z  of each subunit. 
Therefore, just like actin, almost all of the disorder is 
azimuthal. 

Because equation (1) appears to provide a reason- 
able approximation of these two helical systems (actin 
and Teflon), it suggests that this form of disorder may 
be a general feature of other filamentous polymers 
where the number of connections between subunits is 
limited. The essential requirement for this formalism to 
be applicable is that the angular correlation for subunits 
must die off faster than the axial correlation. The helical 
structures of both actin and polytetrafluoroethylene 
appear to obey this requirement. 
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